Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 450: 116154, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798068

RESUMO

Workers involved in oil exploration and production in the upstream petroleum industry are exposed to crude oil vapor (COV). COV levels in the proximity of workers during production tank gauging and opening of thief hatches can exceed regulatory standards, and several deaths have occurred after opening thief hatches. There is a paucity of information regarding the effects of COV inhalation in the lung. To address these knowledge gaps, the present hazard identification study was undertaken to investigate the effects of an acute, single inhalation exposure (6 h) or a 28 d sub-chronic exposure (6 h/d × 4 d/wk × 4 wks) to COV (300 ppm; Macondo well surrogate oil) on ventilatory and non-ventilatory functions of the lung in a rat model 1 and 28 d after acute exposure, and 1, 28 and 90 d following sub-chronic exposure. Basal airway resistance was increased 90 d post-sub-chronic exposure, but reactivity to methacholine (MCh) was unaffected. In the isolated, perfused trachea preparation the inhibitory effect of the airway epithelium on reactivity to MCh was increased at 90 d post-exposure. Efferent cholinergic nerve activity regulating airway smooth muscle was unaffected by COV exposure. Acute exposure did not affect basal airway epithelial ion transport, but 28 d after sub-chronic exposure alterations in active (Na+ and Cl¯) and passive ion transport occurred. COV treatment did not affect lung vascular permeability. The findings indicate that acute and sub-chronic COV inhalation does not appreciably affect ventilatory properties of the rat, but transient changes in airway epithelium occur.


Assuntos
Petróleo , Resistência das Vias Respiratórias , Animais , Exposição por Inalação/efeitos adversos , Pulmão , Cloreto de Metacolina/farmacologia , Petróleo/toxicidade , Ratos
2.
Toxicol Appl Pharmacol ; 409: 115284, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068619

RESUMO

Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m3 of a FSD collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, perfused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na+ transport in airway epithelial cells.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Areia/química , Administração por Inalação , Animais , Poeira , Células Epiteliais/efeitos dos fármacos , Fraturamento Hidráulico/métodos , Masculino , Cloreto de Metacolina/farmacologia , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/efeitos dos fármacos , Dióxido de Silício/efeitos adversos , Traqueia/efeitos dos fármacos
3.
J Toxicol Environ Health A ; 78(6): 397-407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25734767

RESUMO

Previous studies demonstrated that interleukin-1ß (IL-1ß) and nerve growth factor (NGF) increase synthesis of substance P (SP) in airway neurons both after ozone (O3) exposure and by direct application. It was postulated that NGF mediates O3-induced IL-1ß effects on SP. The current study specifically focused on the influence of O3 on IL-1ß, NGF, and SP levels in mice bronchoalveolar lavage fluid (BALF) and whether these mediators may be linked in an inflammatory-neuronal cascade in vivo. The findings showed that in vivo O3 exposure induced an increase of all three proteins in mouse BALF and that O3-induced elevations in both NGF and SP are mediated by the inflammatory cytokine IL-1ß. Further, inhibition of NGF reduced O3 induced increases of SP in both the lung BALF and lung tissue, demonstrating NGF serves as a mediator of IL-1ß effects on SP. These data indicate that IL-1ß is an early mediator of O3-induced rise in NGF and subsequent SP release in mice in vivo.


Assuntos
Interleucina-1beta/metabolismo , Fator de Crescimento Neural/metabolismo , Ozônio/toxicidade , Sistema Respiratório/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Substância P/genética , Poluentes Atmosféricos/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/química , Interleucina-1beta/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator de Crescimento Neural/genética , Substância P/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Toxicol Pathol ; 42(3): 582-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23847039

RESUMO

Inhalation of diacetyl, a butter flavoring, causes airway responses potentially mediated by sensory nerves. This study examines diacetyl-induced changes in sensory nerves of tracheal epithelium. Rats (n = 6/group) inhaled 0-, 25-, 249-, or 346-ppm diacetyl for 6 hr. Tracheas and vagal ganglia were removed 1-day postexposure and labeled for substance P (SP) or protein gene product 9.5 (PGP9.5). Vagal ganglia neurons projecting to airway epithelium were identified by axonal transport of fluorescent microspheres intratracheally instilled 14 days before diacetyl inhalation. End points were SP and PGP9.5 nerve fiber density (NFD) in tracheal epithelium and SP-positive neurons projecting to the trachea. PGP9.5-immunoreactive NFD decreased in foci with denuded epithelium, suggesting loss of airway sensory innervation. However, in the intact epithelium adjacent to denuded foci, SP-immunoreactive NFD increased from 0.01 ± 0.002 in controls to 0.05 ± 0.01 after exposure to 346-ppm diacetyl. In vagal ganglia, SP-positive airway neurons increased from 3.3 ± 3.0% in controls to 25.5 ± 6.6% after inhaling 346-ppm diacetyl. Thus, diacetyl inhalation increases SP levels in sensory nerves of airway epithelium. Because SP release in airways promotes inflammation and activation of sensory nerves mediates reflexes, neural changes may contribute to flavorings-related lung disease pathogenesis.


Assuntos
Diacetil/toxicidade , Mucosa Respiratória , Substância P/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Animais , Corantes Fluorescentes , Exposição por Inalação , Masculino , Neurônios/química , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/química , Mucosa Respiratória/efeitos dos fármacos , Traqueia/citologia
5.
Toxicol Environ Chem ; 93(10): 2055-2071, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22140294

RESUMO

Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O(3)). Airway neurons can mediate airway inflammation through release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O(3) exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O(3) exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O(3) (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O(3) exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O(3) exposure significantly alters sensory neuron development.

6.
Am J Respir Cell Mol Biol ; 45(2): 359-65, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21075861

RESUMO

Airway neural plasticity contributes to the process of airway remodeling in response to airway irritants. However, the mechanisms of neural remodeling in the airways during the early postnatal period, when responses to airway irritation may be most sensitive, have not been characterized. This study used a rat model to examine a possible mechanism of ozone (O(3))-induced neural hyperresponsiveness during a critical period of developmental, postnatal day (PD) 6, that may be mediated by the neurotrophin nerve growth factor (NGF), resulting in an enhanced release of inflammatory neuropeptide substance P (SP) from airway nerves. Rat pups between PD6-PD28 were killed 24 hours after exposure to O(3) (2 ppm, 3 hours) or filtered air (FA), to establish a timeline of NGF synthesis, or else they were exposed to O(3) or NGF on PD6 or PD21 and re-exposed to O(3) on PD28, and killed on PD29. Measurement endpoints included NGF mRNA in tracheal epithelial cells, NGF protein in bronchoalveolar lavage fluid, airway SP-nerve fiber density (NFD), and SP-positive airway neurons in vagal ganglia. Acute exposure to O(3) increased NGF in bronchoalveolar lavage fluid on PD10 and PD15, and mRNA expression in epithelial cells on PD6, compared with FA controls. NGF protein and mRNA expression in the O(3)-PD6/O(3)-PD28 groups were significantly higher than in the O(3)-PD21/O(3)-PD28 and O(3)-PD6/FA-PD28 groups. NGF-PD6/O(3)-PD28 increased the SP innervation of airway smooth muscle and SP-positive sensory neurons, compared with the NGF-PD21/O(3)-PD28 or NGF-PD6/FA-PD28 groups. NGF enhanced sensory innervation, which may mediate acute responses or prolong sensitivity to O(3) during early life. The model may be relevant in O(3) responses during early childhood.


Assuntos
Fator de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Oxidantes Fotoquímicos/farmacologia , Ozônio/farmacologia , Sistema Respiratório/citologia , Sistema Respiratório/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Western Blotting , Líquido da Lavagem Broncoalveolar , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Fator de Crescimento Neural/genética , Neurônios/citologia , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Substância P/metabolismo
7.
Am J Respir Cell Mol Biol ; 43(6): 750-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20118220

RESUMO

Airway infections or irritant exposures during early postnatal periods may contribute to the onset of childhood asthma. The purpose of this study was to examine critical periods of postnatal airway development during which ozone (O(3)) exposure leads to heightened neural responses. Rats were exposed to O(3) (2 ppm) or filtered air for 1 hour on specific postnatal days (PDs) between PD1 and PD29, and killed 24 hours after exposure. In a second experiment, rats were exposed to O(3) on PD2-PD6, inside a proposed critical period of development, or on PD19-PD23, outside the critical period. Both groups were re-exposed to O(3) on PD28, and killed 24 hours later. Airways were removed, fixed, and prepared for substance P (SP) immunocytochemistry. SP nerve fiber density (NFD) in control extrapulmonary (EXP) epithelium/lamina propria (EPLP) increased threefold, from 1% to 3.3% from PD1-PD3 through PD13-PD15, and maintained through PD29. Upon O(3) exposure, SP-NFD in EXP-smooth muscle (SM) and intrapulmonary (INT)-SM increased at least twofold at PD1-PD3 through PD13-PD15 in comparison to air exposure. No change was observed at PD21-PD22 or PD28-PD29. In critical period studies, SP-NFD in the INT-SM and EXP-SM of the PD2-PD6 O(3) group re-exposed to O(3) on PD28 was significantly higher than that of the group exposed at PD19-PD23 and re-exposed at PD28. These findings suggest that O(3)-mediated changes in sensory innervation of SM are more responsive during earlier postnatal development. Enhanced responsiveness of airway sensory nerves may be a contributing mechanism of increased susceptibility to environmental exposures observed in human infants and children.


Assuntos
Pulmão/crescimento & desenvolvimento , Pulmão/inervação , Ozônio/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Humanos , Pulmão/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/metabolismo , Ratos , Testes de Função Respiratória , Substância P/metabolismo , Fatores de Tempo
8.
Environ Health Perspect ; 117(9): 1434-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19750110

RESUMO

BACKGROUND: Cigarette smoke exposure in utero and during early postnatal development increases the incidence of asthma and airway hyperresponsiveness (AHR) later in life, suggesting that a possible critical period of developmental sensitivity exists in the prenatal and early postnatal periods. OBJECTIVE: We investigated mechanisms of susceptibility during critical developmental periods to sidestream smoke (SS) exposure and evaluated the possible effects of SS on neural responses. METHODS: We exposed three different age groups of mice to either SS or filtered air (FA) for 10 consecutive days beginning on gestation day (GD) 7 by maternal exposure or beginning on postnatal day (PND) 2 or PND21 by direct inhalation. Lung function, airway substance P (SP) innervation, and nerve growth factor (NGF) levels in broncho alveolar lavage fluid were measured after a single SS exposure on PND59. RESULTS: Methacholine (MCh) dose response for lung resistance (R(L)) was significantly elevated, and dynamic pulmonary compliance (C(dyn)) was significantly decreased, in the GD7 and PND2 SS exposure groups compared with the FA groups after SS exposure on PND59. At the same time points, the percent area of SP nerve fibers in tracheal smooth muscle and the levels of NGF were significantly elevated. MCh dose-response curves for R(L) and C(dyn), SP nerve fiber density, and the level of NGF were not significantly changed in the PND21 exposure group after SS exposure on PND59. CONCLUSIONS: These results suggest that a critical period of susceptibility to SS exposure exists in the prenatal and early postnatal period of development in mice that results in increased SP innervation, increased NGF levels in the airway, and enhanced MCh AHR later in life.


Assuntos
Hiper-Reatividade Brônquica , Poluição por Fumaça de Tabaco , Animais , Líquido da Lavagem Broncoalveolar , Ensaio de Imunoadsorção Enzimática , Feminino , Cloreto de Metacolina/administração & dosagem , Camundongos , Camundongos Endogâmicos ICR , Fator de Crescimento Neural/metabolismo , Gravidez , Testes de Função Respiratória
9.
Toxicol Sci ; 88(1): 202-12, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16107553

RESUMO

We have previously demonstrated that exposure to diesel exhaust particles (DEP) prior to ovalbumin (OVA) sensitization in rats reduced OVA-induced airway inflammation. In the present study, Brown Norway rats were first sensitized to OVA (42.3 +/- 5.7 mg/m3) for 30 min on days 1, 8, and 15, then exposed to filtered air or DEP (22.7 +/- 2.5 mg/m3) for 4 h/day on days 24-28, and challenged with OVA on day 29. Airway responsiveness was examined on day 30, and animals were sacrificed on day 31. Ovalbumin sensitization and challenge resulted in a significant infiltration of neutrophils, lymphocytes, and eosinophils into the lung, elevated presence of CD4+ and CD8+ T lymphocytes in lung draining lymph nodes, and increased production of serum OVA-specific immunoglobulin (Ig)E and IgG. Diesel exhaust particles pre-exposure augmented OVA-induced production of allergen-specific IgE and IgG and pulmonary inflammation characterized by marked increases in T lymphocytes and infiltration of eosinophils after OVA challenge, whereas DEP alone did not have these effects. Although OVA-sensitized rats showed modest response to methacholine challenge, it was the combined DEP and OVA exposure that produced significant airway hyperresponsiveness in this animal model. The effect of DEP pre-exposure on OVA-induced immune responses correlated with an interactive effect of DEP with OVA on increased production of reactive oxygen species (ROS) and nitric oxide (NO) by alveolar macrophages (AM) and alveolar type II (ATII) cells, NO levels in bronchoalveolar lavage fluid, the induction of inducible NO synthase expression in AM and ATII cells, and a depletion of total intracellular glutathione (GSH) in AM and lymphocytes. These results show that DEP pre-exposure exacerbates the allergic responses to the subsequent challenge with OVA in OVA-sensitized rats. This DEP effect may be, at least partially, attributed to the elevated generation of ROS in AM and ATII cells, a depletion of GSH in AM and lymphocytes, and an increase in AM and ATII cell production of NO.


Assuntos
Poluentes Atmosféricos/toxicidade , Alérgenos/administração & dosagem , Hiper-Reatividade Brônquica/induzido quimicamente , Exposição por Inalação , Ovalbumina/administração & dosagem , Emissões de Veículos/toxicidade , Alérgenos/imunologia , Animais , Hiper-Reatividade Brônquica/imunologia , Testes de Provocação Brônquica , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Óxido Nítrico/metabolismo , Ovalbumina/imunologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Ratos , Ratos Endogâmicos BN , Espécies Reativas de Oxigênio/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
10.
J Toxicol Environ Health A ; 68(15): 1337-48, 2005 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-16020193

RESUMO

Toluene diisocyanate (TDI) produces rhinitis, nasal irritation, and increased synthesis and release of substance P (SP) from airway sensory nerves. Nerve growth factor (NGF) secretion in the nasal cavity is believed to mediate the irritant-induced upregulation of SP, but the cellular source of NGF in the nasal mucosa remains unclear. Studies to localize a source of NGF within the nasal mucosa are complicated by inflammatory-cell influx into the nasal mucosa following TDI, which obscures immunocytochemical identification of endogenous NGF sources. The purpose of this study was to determine the cellular source of NGF within the nasal mucosa following irritant exposure using a combined in vivo and ex vivo approach to reduce or eliminate contribution from inflammatory cells. Both nasal cavities of adult, male Sprague-Dawley rats were instilled with 5 microl of 10% TDI or control vehicle. After 15 min, nasal lavages were performed and the nasal mucosa was removed and placed into culture for 3 or 24 h. NGF was measured in the lavage supernatant and the culture media. Fifteen minutes after TDI exposure, NGF was significantly increased in the nasal lavage fluid. NGF levels in the culture medium of nasal mucosa from rats exposed to TDI ex vivo were significantly increased compared to controls following a 3-h culture. NGF levels in media after 24 h in culture was higher than at the 3-h point, but there was no difference between control and TDI groups. Since the nasal mucosa was removed prior to inflammatory cell influx, these findings suggest that cells in the nasal mucosa release NGF following exposure to TDI.


Assuntos
Mucosa Nasal/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Tolueno 2,4-Di-Isocianato/farmacologia , Animais , Células Cultivadas , Masculino , Mucosa Nasal/metabolismo , Mucosa Nasal/ultraestrutura , Ratos , Ratos Sprague-Dawley
11.
Am J Respir Cell Mol Biol ; 30(6): 793-800, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14672914

RESUMO

Toluene diisocyanate (TDI) exposure produces rhinitis and nasal irritation, and increases the synthesis and release of substance P (SP) from airway sensory nerves. The mechanism leading to enhanced SP production following irritant inhalation remains unclear, but may involve actions of nerve growth factor (NGF). NGF binds trkA receptors located on sensory nerve terminals. Activation of trkA receptors initiates kinase-signaling cascades, which ultimately may increase SP. However, the effects of inhaled irritants on NGF release are not known. In this study, NGF levels in nasal lavages were examined following instillation of 10% TDI into both nasal cavities. NGF was significantly increased 2, 6, 12, and 24 h after TDI exposure compared with controls. The increase in NGF preceded the neuronal and mucosal increases in SP. Pretreatment with K252a, a nonselective tyrosine-kinase inhibitor, prevented the increase in SP-immunoreactivity in TG neurons and epithelial nerve fibers and the inflammatory response to TDI exposure. Because NGF binds to trkA tyrosine-kinase receptors, the NGF released during TDI exposure may mediate SP upregulation in airway sensory neurons, innervating the nasal cavity.


Assuntos
Mucosa Nasal/citologia , Fator de Crescimento Neural/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Substância P/metabolismo , Tolueno 2,4-Di-Isocianato/farmacologia , Animais , Biomarcadores , Carbazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Alcaloides Indólicos , Masculino , Microesferas , Líquido da Lavagem Nasal/química , Líquido da Lavagem Nasal/citologia , Mucosa Nasal/metabolismo , Neutrófilos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Transdução de Sinais/fisiologia
12.
J Appl Physiol (1985) ; 95(2): 742-50, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12730146

RESUMO

Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.


Assuntos
Neurônios/metabolismo , Ozônio/farmacologia , Substância P/fisiologia , Traqueia/inervação , Traqueia/fisiologia , Animais , Capsaicina/farmacologia , Estimulação Elétrica , Feminino , Furões , Gânglios/citologia , Gânglios/efeitos dos fármacos , Gânglios/metabolismo , Técnicas In Vitro , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Fibras Nervosas/metabolismo , Antagonistas dos Receptores de Neurocinina-1 , Piperidinas/farmacologia , Substância P/metabolismo , Traqueia/efeitos dos fármacos
13.
J Toxicol Environ Health A ; 66(11): 1015-27, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12775514

RESUMO

Asphalt fumes have been reported to produce nasal irritation in road workers. Since inhaled irritants can increase substance P (SP) production in airway neurons, the effects of asphalt fumes on SP production in trigeminal ganglia (TG) sensory neurons innervating the nasal mucosa were investigated. The effects of asphalt fumes on nasal mucosal innervation were examined by measuring SP and calcitonin-gene-related peptide (CGRP) levels in rat TG neurons projecting to the nasal epithelium. Female Sprague-Dawley rats were exposed to asphalt fumes at 16.0 +/- 8.1mg /m3 for 5 consecutive days, 3.5 h/d. Inflammatory cells were measured in nasal cavity lavage fluid. SP and CGRP immunoreactivity (IR) was measured in the cell bodies of trigeminal ganglion sensory neurons projecting to the nasal cavity. A significant increase in neutrophils and macrophages was observed after asphalt fume exposure indicating an inflammatory response in the nasal cavity. The percentage of SP-IR neurons increased significantly in the asphalt-exposed rats, and the proportion of CGRP-IR neurons was also elevated following asphalt exposure. These results indicate that exposure to asphalt fumes produces inflammation and increases the levels of SP and CGRP in TG neurons projecting to the nasal epithelium. The findings are consistent with asphalt-induced activation of sensory C-fibers in the nasal cavity. Enhanced sensory neuropeptide release from nerve terminals in the nasal cavity may produce neurogenic inflammation associated with nasal irritation following exposure to asphalt fumes.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Hidrocarbonetos/toxicidade , Mucosa Nasal/inervação , Mucosa Nasal/metabolismo , Neurônios/metabolismo , Substância P/metabolismo , Animais , Epitélio/inervação , Epitélio/metabolismo , Feminino , Imuno-Histoquímica , Inflamação , Exposição por Inalação , Microesferas , Ratos , Ratos Sprague-Dawley , Rodaminas , Irrigação Terapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...